metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[[aqua(pyrazino[2,3-f]-[1,10]phenanthroline)copper(II)]-μbenzene-1,3-dicarboxylato] N,N-dimethylacetamide monohydrate]

Wen-Zhi Zhang

College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, Heilongjiang Province, People's Republic of China Correspondence e-mail: zhangwenzhi1968@yahoo.com.cn

Received 10 May 2007; accepted 10 May 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; R factor = 0.068; wR factor = 0.184; data-to-parameter ratio = 15.6.

In the title compound, $[Cu(C_8H_4O_4)(C_{14}H_8N_4)(H_2O)]$ - $C_4H_9NO\cdotH_2O$, the Cu^{II} atom is five-coordinated by three O atoms from two benzene-1,3-dicarboxylate (1,3-bdc) ligands and one water molecule, and two N atoms from one chelating pyrazino[2,3-*f*][1,10]phenanthroline (*L*) ligand in a distorted square-pyramidal geometry. The Cu^{II} atoms are bridged by the 1,3-bdc ligands to form a one-dimensional helical chain structure. A network of $O-H \cdots O$ hydrogen bonds completes the structure. There are two half-molecules of 1,3-bdc in the asymmetric unit; both complete molecules are generated by twofold rotation symmetry, with two C atoms lying on the rotation axis in each case.

Related literature

One related helical coordination polymer, [Cu(1,4-bdc)- $(L)(H_2O)$], where 1,4-bdc is the benzene-1,4-dicarboxylate dianion, has been reported. In this compound, the Cu^{II} atom is five-coordinate and exhibits a distorted square-pyramidal coordination environment. The Cu^{II} atoms are bridged by the 1,4-bdc ligands to form a one-dimensional helical chain structure (Zhang *et al.*, 2007).

For related literature, see: Cai *et al.* (2006); Dickeson & Summers (1970); Ren & Zhao (2006); Yang *et al.* (2005).

Experimental

Crystal data

a k

С

$Cu(C_{\circ}H_{4}O_{4})(C_{14}H_{\circ}N_{4})$ -	$\beta = 95.00 \ (3)^{\circ}$
$(H_2O)]\cdot C_4H_9NO\cdot H_2O$	$V = 2554.1 (9) \text{ Å}^3$
$A_r = 583.05$	Z = 4
Aonoclinic, $P2/c$	Mo $K\alpha$ radiation
= 14.829 (3) Å	$\mu = 0.91 \text{ mm}^{-1}$
e = 7.2111 (14) Å	T = 293 (2) K
= 23.976 (5) Å	$0.33 \times 0.31 \times 0.30$ mm

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\rm min} = 0.733, T_{\rm max} = 0.766$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.068$	H atoms treated by a mixture of
$wR(F^2) = 0.184$	independent and constrained
S = 1.07	refinement
5813 reflections	$\Delta \rho_{\rm max} = 1.09 \ {\rm e} \ {\rm \AA}^{-3}$
373 parameters	$\Delta \rho_{\rm min} = -0.43 \ {\rm e} \ {\rm \AA}^{-3}$
7 restraints	

23862 measured reflections

 $R_{\rm int} = 0.061$

5813 independent reflections

4102 reflections with $I > 2\sigma(I)$

Table 1

Selected bond lengths (Å).

Cu1-N1	2.026 (4)	Cu1-O3	1.947 (3)
Cu1-N2	2.043 (4)	Cu1 - O1W	2.324 (4)
Cu1-O2	1.920 (3)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1W−HW12···O2W ⁱ	0.86 (4)	1.93 (2)	2.765 (6)	162 (5)
$O1W - HW11 \cdots O5$	0.85 (4)	1.94 (2)	2.772 (5)	165 (5)
$O2W - HW22 \cdots O1$	0.86 (6)	2.10 (4)	2.740 (6)	131 (4)
$O2W-HW21\cdots O4$	0.85 (4)	1.92 (4)	2.732 (6)	159 (9)

Symmetry code: (i) x, y - 1, z.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *PROCESS-AUTO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL-Plus* (Sheldrick, 1990); software used to prepare material for publication: *SHELXL97*.

The work was supported by Program for Young Academic Backbone in Heilongjiang Provincial University (No. 1152G053).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2408).

References

Cai, J.-H., Huang, Y.-H., Jiang, Y.-M. & Ng, S. W. (2006). Acta Cryst. E62, m2823–m2825.

Dickeson, J. E. & Summers, L. A. (1970). *Aust. J. Chem.* **23**, 1023–1027. Higashi, T. (1995). *ABSCOR*. Rigaku Corporation, Tokyo, Japan. Ren, B.-D. & Zhao, Y.-J. (2006). *Acta Cryst.* E**62**, m170–m171. Rigaku (1998). *PROCESS-AUTO*. Rigaku Corporation, Tokyo, Japan.

- Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
 Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of
- Göttingen, Germany.
- Yang, Y., Meng, F.-Y., Zeng, M.-H. & Ng, S. W. (2005). Acta Cryst. E61, m986m988.
- Zhang, Y.-M., Hou, D.-Y., Xin, G. & Li, T.-C. (2007). Acta Cryst. E63, m1363– m1364.

Acta Cryst. (2007). E63, m1692-m1693 [doi:10.1107/S1600536807023082]

catena-Poly[[[aqua(pyrazino[2,3-*f*][1,10]phenanthroline)copper(II)]-*µ*-benzene-1,3-dicarboxylato] *N*,*N*-dimethylacetamide monohydrate]

W.-Z. Zhang

Comment

Recently, helical structures have received intense interest in coordination chemistry (Cai *et al.*, 2006). It is well known that a bidentate organic acid ligand may be useful in the formation of helical chains in the presence of 2,2'-bipyridine (bipy) or 1,10-phenanthroline (phen). The N atoms from the bipy or phen ligand may occupy two coordination positions of central metals (Ren & Zhao, 2006). The additional coordination positions are available for the bidentate carboxylate ligands, leading to the formation of a helix (Yang *et al.*, 2005).

We therefore selected benzene-1,3-dicarboxylic acid $(1,3-bdcH_2)$ as a bridging ligand and pyrazino[2,3f][1,10]phenanthroline (*L*) as a secondary ligand, forming a the title compound, (I), a new helical Cu(II) coordination polymer, [Cu(1,3-bdc)(*L*)(H₂O][·]DMA[·]H₂O (DMA = *N*,*N*-dimethylacetamide), which is reported here.

Selected bond lengths and angles for (I) are given in Table 1. In (I) each Cu^{II} atom is five-coordinated by three O atoms from two monodentate 1,3-bdc ligands and one water molecule, and two N atoms from one chelating *L* ligand in a distorted square-pyramidal coordination sphere (Fig. 1). Two carboxylate O atoms (O2, O3) and two N atoms (N1, N2) form the equatorial plane, whereas the water molecule occupies the axial position with Cu1—O1w distance of 2.324 (4) Å.

The 1,3-bdc ligands linked the Cu^{II} atoms to form a one-dimensional helical chain structure (Fig. 2). The helical chain is decorated with *L* ligands, alternately at each side. Finally, O—H…O H-bonds complete the structure of (I) (Table 2).

Experimental

The *L* ligand was synthesized according to the literature method (Dickeson & Summers, 1970). A *N*,*N*-dimethylacetamide solution (15 ml) of *L* (121 mg, 0.5 mmol) was mixed with an aqueous solution (6 ml) of ClCl₂·2H₂O (86 mg, 0.5 mmol) with stirring at 385 K. Then the 1,3-bdcH₂ was added to the mixture with stirring. The resulting solution was filtered, the filtrate was allowed to stand in air at room temperature for two weeks, and blue crystals of (I) were obtained (yield 29% based on Cu).

Refinement

All H atoms on C atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding, with $U_{iso}(H)=1.2U_{eq}(carrier)$. The water H-atoms were located in a difference Fourier map, and were refined with distance restraints of O–H = 0.85 (1) Å; U_{iso} was allowed to refine freely.

Figures

Fig. 1. The structure of (I), with displacement ellipsoids drawn at the 30% probability level (arbitrary spheres for the H atoms). Symmetry codes: (i) 1 - x, y, 3/2 - z; (ii) -x, y, 3/2 - z.

Fig. 2. View of part of the helical chain structure of (I) with DMA and uncoordinated water molecules omitted for clarity.

catena-Poly[[[aqua(pyrazino[2,3-f][1,10]phenanthroline)copper(II)]-µ- benzene-1,3-dicarboxylato] N,N-dimethylacetamide monohydrate]

Crystal data

$[Cu(C_8H_4O_4)(C_{14}H_8N_4)(H_2O)]\cdot C_4H_9NO\cdot H_2O$	$F_{000} = 1204$
$M_r = 583.05$	$D_{\rm x} = 1.516 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, P2/c	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yc	Cell parameters from 17473 reflections
a = 14.829 (3) Å	$\theta = 3.2 - 27.5^{\circ}$
b = 7.2111 (14) Å	$\mu = 0.91 \text{ mm}^{-1}$
c = 23.976 (5) Å	T = 293 (2) K
$\beta = 95.00 \ (3)^{\circ}$	Block, blue
$V = 2554.1 (9) \text{ Å}^3$	$0.33\times0.31\times0.30~mm$
Z = 4	

Data collection

Rigaku R-AXIS RAPID diffractometer	5813 independent reflections
Radiation source: rotating anode	4102 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.061$
Detector resolution: 10.0 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$

T = 293(2) K	$\theta_{\min} = 3.1^{\circ}$
ω scans	$h = -19 \rightarrow 18$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$k = -9 \rightarrow 9$
$T_{\min} = 0.733, T_{\max} = 0.766$	$l = -31 \rightarrow 31$
23862 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.068$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.184$	$w = 1/[\sigma^2(F_o^2) + (0.0676P)^2 + 7.6293P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{\rm max} < 0.001$
5813 reflections	$\Delta \rho_{max} = 1.09 \text{ e } \text{\AA}^{-3}$
373 parameters	$\Delta \rho_{min} = -0.43 \text{ e } \text{\AA}^{-3}$
7 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant dire methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.4129 (3)	0.2052 (8)	0.5417 (2)	0.0440 (12)
H1	0.4376	0.1590	0.5759	0.053*
C2	0.4719 (3)	0.2530 (8)	0.5017 (2)	0.0497 (13)
H2	0.5342	0.2429	0.5097	0.060*
C3	0.4370 (3)	0.3140 (7)	0.4510 (2)	0.0440 (11)
H3	0.4752	0.3432	0.4235	0.053*
C4	0.3426 (3)	0.3333 (6)	0.43985 (18)	0.0357 (10)
C5	0.2887 (3)	0.2852 (6)	0.48253 (17)	0.0314 (9)
C6	0.1916 (3)	0.2943 (6)	0.47436 (17)	0.0297 (9)
C7	0.0563 (3)	0.2370 (7)	0.5113 (2)	0.0424 (11)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H7	0.0246	0.1983	0.5411	0.051*
C8	0.0072 (3)	0.2930 (8)	0.4617 (2)	0.0475 (12)
H8	-0.0558	0.2909	0.4587	0.057*
C9	0.0525 (3)	0.3505 (7)	0.4178 (2)	0.0422 (11)
H9	0.0208	0.3879	0.3845	0.051*
C10	0.1472 (3)	0.3528 (6)	0.42319 (18)	0.0339 (9)
C11	0.2981 (3)	0.3891 (6)	0.38611 (18)	0.0376 (10)
C12	0.2044 (3)	0.4006 (6)	0.37806 (17)	0.0346 (10)
C13	0.2132 (4)	0.4844 (7)	0.2878 (2)	0.0522 (14)
H13	0.1863	0.5186	0.2528	0.063*
C14	0.3063 (5)	0.4713 (8)	0.2957 (2)	0.0570 (15)
H14	0.3395	0.4941	0.2652	0.068*
C15	0.3677 (3)	0.1853 (8)	0.67698 (17)	0.0414 (12)
C16	0.4361 (3)	0.0762 (7)	0.71521 (17)	0.0361 (10)
C17	0.5000	0.1725 (9)	0.7500	0.0340 (13)
H17	0.5000	0.3015	0.7500	0.041*
C18	0.4360 (3)	-0.1149 (8)	0.7155 (2)	0.0456 (12)
H18	0.3931	-0.1798	0.6925	0.055*
C19	0.5000	-0.2104 (12)	0.7500	0.058 (2)
H19	0.5000	-0.3394	0.7500	0.070*
C20	0.0931 (3)	0.2029 (7)	0.66650 (17)	0.0352 (10)
C21	0.0441 (3)	0.0973 (6)	0.70954 (16)	0.0319 (9)
C22	0.0000	0.1949 (9)	0.7500	0.0318 (13)
H22	0.0000	0.3239	0.7500	0.038*
C23	0.0432 (3)	-0.0947 (7)	0.71019 (19)	0.0407 (11)
H23	0.0721	-0.1597	0.6834	0.049*
C24	0.0000	-0.1916 (10)	0.7500	0.0461 (17)
H24	0.0000	-0.3206	0.7500	0.055*
C25	0.2265 (4)	-0.0370(9)	0.3096 (2)	0.0595 (16)
H25A	0.2479	0.0777	0.2953	0.089*
H25B	0.1640	-0.0243	0.3165	0.089*
H25C	0.2326	-0.1338	0.2827	0.089*
C26	0.3805 (4)	-0.0846(9)	0.3637 (2)	0.0552 (14)
H26A	0.3996	-0.0077	0.3343	0.083*
H26B	0.4014	-0.2091	0.3589	0.083*
H26C	0.4055	-0.0376	0.3992	0.083*
C27	0.2456 (5)	-0.1394(8)	0.4071 (3)	0.0586 (15)
C28	0.1422 (3)	-0.1422 (8)	0.4065 (3)	0.0530 (13)
H28A	0.1174	-0.2215	0.3768	0.080*
H28B	0.1191	-0.0188	0.4005	0.080*
H28C	0.1253	-0.1880	0.4417	0.080*
N1	0.1455 (2)	0.2367 (5)	0.51787 (14)	0.0328 (8)
N2	0.3234 (2)	0.2223 (6)	0.53358 (15)	0.0347 (8)
N3	0.3510 (3)	0.4285 (6)	0.34392 (18)	0.0497 (11)
N4	0.1615 (3)	0.4498 (6)	0.32826 (16)	0.0465 (10)
N5	0.2799 (3)	-0.0837 (7)	0.36185 (19)	0.0558 (12)
01	0.3691 (3)	0.3545 (6)	0.67766 (17)	0.0612 (11)
02	0.3140 (2)	0.0834 (6)	0.64574 (14)	0.0533 (10)
O1W	0.2181 (3)	-0.1484 (5)	0.55112 (14)	0.0475 (9)
	× /	× /	× /	· · ·

HW11	0.241 (4)	-0.181 (7)	0	.5213 (13)	0.064 (19)*	
HW12	0.234 (3)	-0.239 (5)	0	.5731 (15)	0.044 (15)*	
03	0.1262 (2)	0.1001 (6)	0	.63021 (13)	0.0490 (9)	
O2W	0.2320 (3)	0.5306 (7)	0	.61437 (18)	0.0654 (12)	
HW21	0.186 (3)	0.510 (12)	0	.632 (3)	0.11 (3)*	
HW22	0.276 (3)	0.545 (7)	0	.640 (3)	0.14 (4)*	
04	0.0964 (3)	0.3738 (5)	0	.66852 (15)	0.0518 (9)	
05	0.2951 (3)	-0.1872 (6)	0	.45047 (14)	0.0563 (10)	
Cu1	0.22665 (4)	0.15296 (9)	0	.58553 (2)	0.03622 (19)	
Atomic displac	ement parameters	$(Å^2)$				
inonic unspine	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.035 (2)	0.057 (3)	0.039 (2)	0.001 (2)	-0.004(2)	0.000 (2)
C2	0.031(2)	0.066 (4)	0.052(3)	-0.003(2)	0.003(2)	-0.001(3)
C3	0.042(3)	0.046(3)	0.002(3)	-0.007(2)	0.016(2)	0.001(2)
C4	0.038(2)	0.035(2)	0.034(2)	-0.005(2)	0.0055(18)	-0.0019(19)
C5	0.033(2)	0.033 (2)	0.029(2)	-0.0013(1)	8) 0.0036 (17)	-0.0034(17)
C6	0.035 (2)	0.026 (2)	0.0284 (19) 0.0021 (17)	0.0013 (17)	-0.0028 (16)
C7	0.034 (2)	0.054 (3)	0.040 (2)	0.000 (2)	0.006 (2)	0.005 (2)
C8	0.027(2)	0.062 (3)	0.053(3)	0.003(2)	0.000 (2)	0.002 (3)
C9	0.041 (2)	0.044 (3)	0.039 (2)	0.007(2)	-0.006(2)	-0.001(2)
C10	0.041 (2)	0.030 (2)	0.031 (2)	0.0021 (19)	-0.0005(18)	-0.0013 (18)
C11	0.050 (3)	0.032 (2)	0.031 (2)	-0.002 (2)	0.010 (2)	0.0023 (18)
C12	0.047 (3)	0.029 (2)	0.028 (2)	0.0007 (19)	0.0039 (18)	0.0008 (17)
C13	0.082 (4)	0.044 (3)	0.029 (2)	0.007 (3)	0.002 (2)	0.010 (2)
C14	0.090 (5)	0.045 (3)	0.039 (3)	0.005 (3)	0.023 (3)	0.009 (2)
C15	0.038 (2)	0.065 (4)	0.0213 (19) 0.000 (2)	0.0000 (18)	0.001 (2)
C16	0.032 (2)	0.050 (3)	0.026 (2)	-0.002 (2)	0.0028 (17)	-0.0013 (19)
C17	0.035 (3)	0.042 (4)	0.026 (3)	0.000	0.005 (2)	0.000
C18	0.041 (3)	0.052 (3)	0.042 (3)	-0.008(2)	-0.007 (2)	-0.006(2)
C19	0.049 (4)	0.053 (5)	0.071 (5)	0.000	-0.004 (4)	0.000
C20	0.031 (2)	0.050 (3)	0.0251 (19) 0.002 (2)	0.0021 (17)	-0.0001 (19)
C21	0.030 (2)	0.043 (2)	0.0222 (18) -0.0035 (1)	8) 0.0014 (16)	-0.0005 (17)
C22	0.033 (3)	0.040 (3)	0.023 (3)	0.000	0.002 (2)	0.000
C23	0.047 (3)	0.044 (3)	0.032 (2)	0.005 (2)	0.008 (2)	-0.008(2)
C24	0.062 (5)	0.030 (4)	0.047 (4)	0.000	0.007 (3)	0.000
C25	0.080 (4)	0.052 (3)	0.044 (3)	0.000 (3)	-0.014 (3)	0.010 (3)
C26	0.044 (3)	0.069 (4)	0.055 (3)	-0.003(3)	0.017 (2)	-0.012 (3)
C27	0.073 (4)	0.045 (3)	0.061 (3)	-0.003(3)	0.017 (3)	-0.014 (3)
C28	0.037 (3)	0.055 (3)	0.068 (3)	0.001 (2)	0.010(2)	-0.009 (3)
N1	0.0294 (18)	0.040 (2)	0.0293 (17) 0.0012 (16)	0.0047 (14)	-0.0005 (15)
N2	0.0292 (18)	0.045 (2)	0.0298 (17) -0.0003 (1	6) 0.0007 (14)	-0.0038 (16)
N3	0.059 (3)	0.050 (3)	0.042 (2)	0.002 (2)	0.016 (2)	0.008 (2)
N4	0.060 (3)	0.046 (2)	0.033 (2)	0.007 (2)	0.0010 (19)	0.0024 (18)
N5	0.060 (3)	0.062 (3)	0.046 (2)	0.000 (2)	0.004 (2)	0.000 (2)
01	0.065 (3)	0.056 (3)	0.059 (2)	0.015 (2)	-0.018 (2)	-0.006 (2)
02	0.052 (2)	0.068 (3)	0.0364 (17) -0.0087 (1	9) -0.0164 (16)	0.0066 (17)

O1W	0.060 (2)	0.050 (2)	0.0331 (17)	0.0020 (18)	0.0091 (16)	0.0023 (16)
O3	0.050 (2)	0.069 (2)	0.0303 (16)	-0.0023 (18)	0.0203 (15)	-0.0047 (16)
O2W	0.061 (3)	0.076 (3)	0.060 (2)	-0.001 (2)	0.008 (2)	0.033 (2)
O4	0.059 (2)	0.047 (2)	0.052 (2)	-0.0009 (18)	0.0232 (18)	0.0075 (17)
O5	0.060 (2)	0.075 (3)	0.0345 (17)	0.006 (2)	0.0035 (16)	0.0069 (18)
Cu1	0.0312 (3)	0.0564 (4)	0.0209 (2)	0.0002 (3)	0.00140 (19)	-0.0004 (2)
Geometric param	neters (Å, °)					
C1—N2		1.331 (6)	C18—1	H18	0.930	0
C1—C2		1.397 (7)	C19—0	C18 ⁱ	1.387	(7)
C1—H1		0.9300	C19—1	H19	0.930	0
C2—C3		1.351 (7)	C20—0	04	1.234	(6)
С2—Н2		0.9300	C20—0	03	1.274	(6)
C3—C4		1.408 (7)	C20—0	221	1.518	(6)
С3—Н3		0.9300	C21—0	223	1.385	(7)
C4—C5		1.396 (6)	C21—0	C22	1.405	(5)
C4—C11		1.453 (6)	C22—(C21 ⁱⁱ	1.405	(5)
C5—N2		1.363 (5)	C22—1	H22	0.930	0
C5—C6		1.437 (6)	C23—(224	1.384	(6)
C6—N1		1.361 (5)	C23—I	H23	0.930	0
C6—C10		1.406 (6)	C24—(C23 ⁱⁱ	1.384	(6)
C7—N1		1.318 (6)	C24—]	H24	0.930	0
С7—С8		1.400 (7)	C25—]	N5	1.462	(7)
С7—Н7		0.9300	C25—1	H25A	0.960	0
С8—С9		1.362 (7)	C25—1	H25B	0.960	0
С8—Н8		0.9300	C25—1	H25C	0.960	0
C9—C10		1.399 (7)	C26—]	N5	1.489	(7)
С9—Н9		0.9300	C26—]	H26A	0.960	0
C10-C12		1.473 (6)	C26—1	H26B	0.960	0
C11—N3		1.363 (6)	C26—1	H26C	0.960	0
C11—C12		1.388 (7)	C27—0	05	1.267	(7)
C12—N4		1.351 (6)	C27—1	N5	1.302	(7)
C13—N4		1.311 (7)	C27—(228	1.531	(8)
C13—C14		1.381 (9)	C28—1	H28A	0.960	0
C13—H13		0.9300	C28—1	H28B	0.960	0
C14—N3		1.318 (7)	C28—1	H28C	0.960	0
C14—H14		0.9300	Cu1—]	N1	2.026	(4)
C15—O1		1.221 (7)	Cu1—1	N2	2.043	(4)
C15—O2		1.277 (6)	Cu1—	02	1.920	(3)
C15—C16		1.525 (7)	Cu1—	03	1.947	(3)
C16—C18		1.378 (7)	Cu1—	D1W	2.324	(4)
C16—C17		1.392 (6)	O1W-	-HW11	0.85 (4)
C17—C16 ⁱ		1.392 (6)	O1W-	-HW12	0.86 (4)
С17—Н17		0.9300	O2W-	-HW21	0.85 (5)
C18—C19		1.387 (7)	O2W-	-HW22	0.86 (6)
N2—C1—C2		123.5 (5)	C23—	C21—C22	119.2	(4)
N2—C1—H1		118.3	C23—(C21—C20	121.0	(4)

C2—C1—H1	118.3	C22—C21—C20	119.8 (4)
C3—C2—C1	119.0 (5)	C21—C22—C21 ⁱⁱ	119.9 (6)
С3—С2—Н2	120.5	C21—C22—H22	120.1
С1—С2—Н2	120.5	C21 ⁱⁱ —C22—H22	120.1
$C_{2}^{2} - C_{3}^{2} - C_{4}^{4}$	119 9 (4)	$C_{21} = C_{22} = 1122$ $C_{24} = C_{23} = C_{21}$	121.2 (5)
$C_2 = C_3 = H_3$	119.9 (4)	C24 C23 C21 C24—C23—H23	119.4
C_{4} C_{3} H_{3}	120.0	C21-C23-H23	119.1
C_{5}^{-} C_{4}^{-} C_{3}^{-}	1173(4)		119.1
	119.2 (4)		119.4 (0)
C5C4C11	118.3 (4)	C23"—C24—H24	120.3
C3—C4—C11	124.3 (4)	C23—C24—H24	120.3
N2-C5-C4	123.0 (4)	N5-C25-H25A	109.5
N2—C5—C6	115.6 (4)	N5-C25-H25B	109.5
C4 - C5 - C6	121.3 (4)	H25A—C25—H25B	109.5
NI-C6-C10	122.2 (4)	N5-C25-H25C	109.5
NI-C6-C5	116.5 (4)	H25A—C25—H25C	109.5
C10-C6-C5	121.3 (4)	H25B-C25-H25C	109.5
NI-C7-U2	123.0 (4)	N5-C26-H26A	109.5
NI-C/-H/	118.5	$N_{2} = C_{2} = H_{2} = B_{2}$	109.5
C8—C/—H/	118.5	$H_{2}6A = C_{2}6 = H_{2}6B$	109.5
$C_{9} = C_{8} = C_{7}$	119.3 (4)	$N_{2} = C_{2} = H_{2} = C_{2}$	109.5
$C_{2} = C_{3} = H_{3}$	120.3	$H_{20}A = C_{20} = H_{20}C$	109.5
$C^{2} = C^{2} = C^{1}$	120.5	H20B-C20-H20C	109.5
$C_8 = C_9 = C_{10}$	119.4 (4)	05-027-03	121.8 (6)
C10 C0 U0	120.3	05-027-028	120.8 (5)
C10-C9-H9	120.3	$N_{2} = C_{2}^{2} = C_{2}^{2}$	117.3 (6)
$C_{9} = C_{10} = C_{8}$	117.9 (4)	$C_2/-C_{28}$ H28A	109.5
$C_{9} = C_{10} = C_{12}$	124.9 (4)	$C_2/-C_{20}$ - $\Pi_{20}B$	109.5
$C_0 = C_{10} = C_{12}$	117.1(4)	$\Pi_{2}\delta A = C_{2}\delta = \Pi_{2}\delta B$	109.5
N3-C11-C12	121.2 (4)	$C_2/-C_{28}$ -H ₂₈ C	109.5
13 - 11 - 14	110.0(4) 120.8(4)	$H_{28} = C_{28} = H_{28} C_{28}$	109.5
N4 C12 C11	120.0(4)	120B - 220 - 120C	109.5
N4 C12 C10	121.8(4) 117.0(4)	C/-NI-C0	118.3 (4)
14 - 012 - 010	117.0 (4)	C = NI = CuI	128.0(3)
$V_{11} = C_{12} = C_{10}$	121.1(4) 121.8(5)	$C_0 = N_1 = C_0$	113.7(3) 117.2(4)
N4 C13 H13	121.8 (5)	C1 = N2 = C3	117.2(4) 129.2(3)
114 - 13 - 113	119.1	$C_1 = N_2 = C_{u1}$	129.2(3)
$N_{14} = C_{15} = M_{15}$	119.1	$C_3 = N_2 = C_{11}$	115.0 (5)
N3 C14 H14	123.8 (5)	C14 N/ $C12$	115.0(5)
C_{13} C_{14} H_{14}	118.1	C13 - N4 - C12 C27 - N5 - C25	124.3 (6)
01 - 015 - 02	126.3 (5)	C_{27} N5 C_{25}	124.5(0) 115.9(5)
01 - 015 - 02	120.3(5) 110.0(4)	$C_{27} = N_{5} = C_{20}$	119.5(5)
$02 \ C15 \ C16$	113.3(4) 113.8(5)	$C_{23} = N_3 = C_{20}$	119.0 (3)
C_{18} C_{16} C_{17} C_{18} C_{16} C_{17}	119.8 (5)	C_{11} O_{12} C_{11} O_{11} W_{11}	129.3(4) 123(4)
C_{18} C_{16} C_{15}	121 2 (4)	$Cu1 \longrightarrow 01W \longrightarrow HW12$	119 (3)
C_{17} $-C_{16}$ $-C_{15}$	121.2(7) 1190(5)	HW11-01W-HW12	101(3)
	120.2 (6)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	101 (3)
C16-C17-C16	120.2 (0)		128.4 (3)
C16-C17-H17	119.9	HW21—O2W—HW22	105 (3)

C16 ⁱ —C17—H17	119.9	O2—Cu1—O3	91.92 (16)
C16—C18—C19	119.9 (5)	O2—Cu1—N1	174.00 (16)
C16—C18—H18	120.0	O3—Cu1—N1	93.99 (15)
C19—C18—H18	120.0	O2—Cu1—N2	93.37 (16)
C18 ⁱ —C19—C18	120.4 (8)	O3—Cu1—N2	174.49 (15)
C18 ⁱ —C19—H19	119.8	N1—Cu1—N2	80.69 (14)
С18—С19—Н19	119.8	O2—Cu1—O1W	92.00 (16)
O4—C20—O3	126.3 (4)	O3—Cu1—O1W	89.51 (15)
O4—C20—C21	119.6 (4)	N1—Cu1—O1W	89.09 (14)
O3—C20—C21	114.1 (4)	N2—Cu1—O1W	91.83 (14)
N2—C1—C2—C3	-2.4 (9)	C22—C21—C23—C24	-0.2 (6)
C1—C2—C3—C4	1.7 (8)	C20-C21-C23-C24	178.8 (3)
C2—C3—C4—C5	-0.7 (7)	C21—C23—C24—C23 ⁱⁱ	0.1 (3)
C2—C3—C4—C11	-177.0 (5)	C8—C7—N1—C6	0.3 (7)
C3—C4—C5—N2	0.2 (7)	C8—C7—N1—Cu1	-177.9 (4)
C11—C4—C5—N2	176.7 (4)	C10—C6—N1—C7	-0.2 (6)
C3—C4—C5—C6	-177.9 (4)	C5—C6—N1—C7	-177.8 (4)
C11—C4—C5—C6	-1.4 (7)	C10—C6—N1—Cu1	178.2 (3)
N2-C5-C6-N1	-1.0 (6)	C5—C6—N1—Cu1	0.7 (5)
C4—C5—C6—N1	177.2 (4)	C2-C1-N2-C5	1.9 (8)
N2-C5-C6-C10	-178.6 (4)	C2—C1—N2—Cu1	177.8 (4)
C4—C5—C6—C10	-0.3 (7)	C4—C5—N2—C1	-0.8 (7)
N1—C7—C8—C9	-0.1 (8)	C6—C5—N2—C1	177.4 (4)
C7—C8—C9—C10	-0.1 (8)	C4—C5—N2—Cu1	-177.4 (3)
C8—C9—C10—C6	0.2 (7)	C6—C5—N2—Cu1	0.8 (5)
C8—C9—C10—C12	176.0 (5)	C13—C14—N3—C11	2.7 (8)
N1-C6-C10-C9	0.0 (7)	C12-C11-N3-C14	-2.1 (7)
C5—C6—C10—C9	177.4 (4)	C4—C11—N3—C14	177.5 (5)
N1-C6-C10-C12	-176.2 (4)	C14—C13—N4—C12	-0.1 (8)
C5-C6-C10-C12	1.2 (6)	C11—C12—N4—C13	0.6 (7)
C5-C4-C11-N3	-177.4 (4)	C10-C12-N4-C13	-177.2 (4)
C3—C4—C11—N3	-1.2 (7)	O5-C27-N5-C25	176.3 (5)
C5—C4—C11—C12	2.2 (7)	C28—C27—N5—C25	-4.6 (8)
C3-C4-C11-C12	178.4 (5)	O5-C27-N5-C26	1.5 (8)
N3-C11-C12-N4	0.5 (7)	C28—C27—N5—C26	-179.4 (5)
C4—C11—C12—N4	-179.1 (4)	O1-C15-O2-Cu1	6.5 (8)
N3-C11-C12-C10	178.2 (4)	C16—C15—O2—Cu1	-172.2 (3)
C4—C11—C12—C10	-1.3 (7)	O4—C20—O3—Cu1	25.4 (7)
C9-C10-C12-N4	1.6 (7)	C21—C20—O3—Cu1	-156.0 (3)
C6-C10-C12-N4	177.5 (4)	C15—O2—Cu1—O3	-107.8 (4)
C9-C10-C12-C11	-176.2 (5)	C15—O2—Cu1—N2	70.6 (4)
C6—C10—C12—C11	-0.4 (6)	C15—O2—Cu1—O1W	162.6 (4)
N4—C13—C14—N3	-1.8 (9)	C20—O3—Cu1—O2	82.1 (4)
O1-C15-C16-C18	179.8 (5)	C20—O3—Cu1—N1	-96.8 (4)
O2-C15-C16-C18	-1.4 (6)	C20—O3—Cu1—O1W	174.1 (4)
O1—C15—C16—C17	-0.7 (6)	C7—N1—Cu1—O3	-3.4 (4)
O2-C15-C16-C17	178.0 (4)	C6—N1—Cu1—O3	178.4 (3)
C18—C16—C17—C16 ⁱ	0.3 (3)	C7—N1—Cu1—N2	178.1 (4)

C15—C16—C17—C16 ⁱ	-179.2 (4)	C6—N1—Cu1—N2	-0.2 (3)			
C17-C16-C18-C19	-0.5 (7)	C7—N1—Cu1—O1W	86.1 (4)			
C15-C16-C18-C19	178.9 (4)	C6—N1—Cu1—O1W	-92.2 (3)			
C16—C18—C19—C18 ⁱ	0.3 (3)	C1—N2—Cu1—O2	4.4 (5)			
O4—C20—C21—C23	-176.6 (5)	C5—N2—Cu1—O2	-179.4 (3)			
O3—C20—C21—C23	4.6 (6)	C1—N2—Cu1—N1	-176.4 (5)			
O4—C20—C21—C22	2.4 (6)	C5—N2—Cu1—N1	-0.3 (3)			
O3—C20—C21—C22	-176.4 (3)	C1—N2—Cu1—O1W	-87.7 (4)			
C23—C21—C22—C21 ⁱⁱ	0.1 (3)	C5—N2—Cu1—O1W	88.4 (3)			
C20—C21—C22—C21 ⁱⁱ	-178.9 (4)					
Symmetry codes: (i) $-x+1$, y , $-z+3/2$; (ii) $-x$, y , $-z+3/2$.						

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O1W—HW12···O2W ⁱⁱⁱ	0.86 (4)	1.93 (2)	2.765 (6)	162 (5)
O1W—HW11…O5	0.85 (4)	1.94 (2)	2.772 (5)	165 (5)
O2W—HW22…O1	0.86 (6)	2.10 (4)	2.740 (6)	131 (4)
O2W—HW21…O4	0.85 (4)	1.92 (4)	2.732 (6)	159 (9)
Symmetry codes: (iii) $x, y-1, z$.				

